Nem todos os números que irão compor o conjunto de números Reais podem ser expressados através de uma divisão simples entre dois números Inteiros, como foi explicado na postagem sobre os números Racionais.A necessidade de criação deste conjunto específico se deu quanto a trigonometria, geometria e aritmética tiveram que ser representadas adequadamente.O exemplo clássico é o calculo da diagonal do quadrado de lado UM.
A partir deste exemplo geométrico, traremos um problema aritmético, pois é impossível representar o resultado de uma raiz quadrada, de alguns números específicos, com a simples divisão entre dois números inteiros.
Estes problemas já eram conhecidos da Escola Pitagórica (séc. V a.c.), que considerava os irracionais heréticos. A Ciência grega consegui um aprofundamento de toda a teoria dos números racionais, por via geométrica - "Elementos de Euclides" - mas não avançou, por razões essencialmente filosóficas, no campo do conceito de número.
Para os gregos, toda a figura geométrica era formada por um número finito de pontos, sendo estes concebidos como minúsculos corpúsculos - "as mónadas" - todos iguais entre si; daí resultava que, ao medir um comprimento de n mónadas com outro de m, essa medida seria sempre representada por uma razão entre dois inteiros n/m (número racional); tal comprimento incluía-se, então na categoria dos comensuráveis.
Ao encontrar os irracionais, aos quais não conseguem dar forma de fração, os matemáticos gregos são levados a conceber grandezas incomensuráveis. A reta onde se marcavam todos os racionais era, para eles, perfeitamente contínua; admitir os irracionais era imaginála cheia de "buracos". É no séc. XVII, com a criação da Geometria Analítica (Fermat e Descartes), que se estabelece a simbiose do geométrico com o algébrico, favorecendo o tratamento aritmético do comensurável e do incomensurável. Newton (1642-1727) define pela primeira vez "número", tanto racional como irracional.
Foi só em 1872 que o matemático alemão Dedekind (1831-1916) fez entrar na Aritmética, em termos rigorosos os números irracionais que a geometria sugerira há mais de vinte séculos.
Todas as raízes quadradas de números naturais que não sejam quadrados perfeitos, isto é se a raiz quadrada de um número natural não for inteira, é irracional. Números representáveis por dízimas infinitas não periódicas.
O IRRACIONAL ø
ø =1,6180339887... ou ø =(1 + sqr(5))/2 é considerado símbolo de harmonia. Os artistas gregos usavam-no em arquitetura; Leonardo da Vinci, nos seus trabalhos artísticos; e, no mundo moderno, o arquiteto Le Corbusier, com base nele, apresentou, em 1948, O modulor. O número de ouro descobre-se em relações métricas:
- na natureza: em animais (como na concha do Nautilus) flores, frutos, na disposição dos ramos de certas árvores;
- em figuras geométricas, tais como o retângulo de ouro, hexágono e decágono regulares e poliedros regulares;
- em inúmeros monumentos, desde a Pirâmide de Quéops até diversas catedrais, na escultura, pintura e até na música.
- na natureza: em animais (como na concha do Nautilus) flores, frutos, na disposição dos ramos de certas árvores;
- em figuras geométricas, tais como o retângulo de ouro, hexágono e decágono regulares e poliedros regulares;
- em inúmeros monumentos, desde a Pirâmide de Quéops até diversas catedrais, na escultura, pintura e até na música.

Nenhum comentário:
Postar um comentário