Ao desenvolver o teorema iremos nos deparar com a raiz quadrada de um número negativo, sendo impossível a resolução dentro do conjunto dos números Reais, pois não existe número negativo que elevado ao quadrado tenha como resultado um número negativo. A resolução destas raízes só foi possível com a criação e adequação dos números complexos, por Leonhard Euler. Os números Complexos são representados pela letra C e mais conhecidos como o número da letra i, sendo designada nesse conjunto a seguinte fundamentação: i² = -1.
Historicamente, os números complexos começaram a ser estudados graças à grande contribuição do matemático Girolamo Cardano (1501-1576). Esse matemático mostrou que mesmo tendo um termo negativo em uma raiz quadrada era possível obter uma solução para a equação do segundo grau: x2 – 10x +40 = 0. Essa contribuição foi de grande importância, pois até então os matemáticos não acreditavam ser possível extrair a raiz quadrada de um número negativo. A partir dos estudos de Girolamo Cardano, outros matemáticos estudaram sobre esse impasse na matemática, obtendo uma formalização rigorosa com Friedrich Gauss (1777-1855). Esses estudos levaram os matemáticos ao cálculo das raízes de números negativos, pois com a utilização do termo i² = -1, também conhecido como número imaginário, é possível extrair a raiz quadrada de números negativos. Observe o processo:
Historicamente, os números complexos começaram a ser estudados graças à grande contribuição do matemático Girolamo Cardano (1501-1576). Esse matemático mostrou que mesmo tendo um termo negativo em uma raiz quadrada era possível obter uma solução para a equação do segundo grau: x2 – 10x +40 = 0. Essa contribuição foi de grande importância, pois até então os matemáticos não acreditavam ser possível extrair a raiz quadrada de um número negativo. A partir dos estudos de Girolamo Cardano, outros matemáticos estudaram sobre esse impasse na matemática, obtendo uma formalização rigorosa com Friedrich Gauss (1777-1855). Esses estudos levaram os matemáticos ao cálculo das raízes de números negativos, pois com a utilização do termo i² = -1, também conhecido como número imaginário, é possível extrair a raiz quadrada de números negativos. Observe o processo:
O conjunto dos números complexos é o conjunto que possui maior cardinalidade, afinal ele contém todos os outros conjuntos. É necessário, pois, compreender os processos das operações (aritméticas, trigonométricas, algébricas) envolvendo elementos desse conjunto, assim como a representação geométrica dos números complexos.
A definição como o conjunto dos pares ordenados compostos por números reais, onde são definidas a adição e a multiplicação e a igualdade.
• Adição: ( a, b) + ( c, d ) = ( a + c, b + d ).
• Multiplicação: ( a, b) . ( c, d ) = ( ac - bd, ad + bc ).
• Igualdade: ( a, b) = ( c, d ) , onde a = c, b = d.
• Multiplicação: ( a, b) . ( c, d ) = ( ac - bd, ad + bc ).
• Igualdade: ( a, b) = ( c, d ) , onde a = c, b = d.
Tomando-se um número z = ( a, b), teremos que z = a + bi. Portanto se assim considerarmos termos que a é a parte real de z e b a parte complexa de z.
Para esta nova notação iremos definir as operações novamente de maneira mais usual.
• Adição: (a + bi) + ( c + di) = (a + c) + (b + d)i
• Multiplicação: (a + bi).( c + di) = ( ac – bd) + (ad + bc)i
• Igualdade: (a + bi) = ( c + di), onde a = c, b = d
• Multiplicação: (a + bi).( c + di) = ( ac – bd) + (ad + bc)i
• Igualdade: (a + bi) = ( c + di), onde a = c, b = d
Conjugado de um número complexo. (
)
Se z = a + bi então
= a – bi
Se z = a + bi então
Teoremas conseqüentes desta definição:
Para a Divisão de números complexos devemos proceder de forma semelhante à racionalização.
Assim temos, z = a + bi ,
= a – bi e z1 = c + di
Assim temos, z = a + bi ,
Para calcularmos a razão entre z1 e z devemos: 
Representação geométrica de um número complexo.
Sendo z = a + bi , |z| = 
Pela representação gráfica temos que 
Onde substituindo em z = a + bi encontraremos a forma trigonométrica de um número complexo.
Exemplo: z =
iremos representa-lo na forma trigonométrica.
Sendo que 
Onde
Onde
Assim sua representação na forma trigonométrica é
.